Tutorial 2
(You are NOT expected to have time to answer ALL questions. Try as many as you can. Write down clearly your arguments.).

1. (a) (warm-up exercise on Mathematical Induction) Show, using Mathematical Induction, that

$$
1+2^{2}+3^{2}+\cdots+n^{2}=\frac{n^{2}(n+1)^{2}}{4}
$$

(b) Recall that in the Generalized Binomial Theorem, we had the Binomial Coefficients, i.e.

$$
C_{k}^{a} \xlongequal{\text { def }} \frac{a(a-1)(a-2) \cdots(a-k+1)}{k!},
$$

where $a$ ia a real number and $k$ a natural number (i.e. $0,1,2,3, \cdots$ ).
Show, using Mathematical Induction, that

$$
C_{0}^{a+0}+C_{1}^{a+1}+\cdots+C_{n}^{a+n}=C_{n}^{a+n+1}
$$

where $n$ is any natural number, i.e $n=0,1,2, \cdots$
2. (Exercise on "ln" function). Denote the set of all positive real numbers by $(0, \infty)$. Show the following: The function

$$
f:(0, \infty) \rightarrow(0, \infty)
$$

given by the rule $f(x)=\ln \left(1+x^{2}\right)$ has range $R(f)$ equal to the set $(0, \infty)$.
(Hint: you can use the following facts: (i) $e^{y}$ takes on (= "can achieve") every value in the set $(1, \infty)$; (ii) for any $v>0$, the square root $\sqrt{v}$ is always defined.)
3. In the preceding question, show that $f$ is injective using the fact that

$$
\exp (\ln (u))=u \text { for each } u>0
$$

4. Find all real numbers $b$ for which that $g(x)=x^{3}+b x$ is an injective function.
5. Using elementary algebra, show that for any $x_{1}>x_{2}>0$, the following inequality holds:

$$
\exp \left(x_{1}\right)>\exp \left(x_{2}\right)
$$

(Hint:

- Use

$$
\exp \left(x_{1}-x_{2}\right)=\frac{\exp \left(x_{1}\right)}{\exp \left(x_{2}\right)}
$$

- and the definition of $\exp \left(x_{1}-x_{2}\right)$, i.e.

$$
\left.\exp \left(x_{1}-x_{2}\right)=1+\frac{x_{1}-x_{2}}{1!}+\frac{\left(x_{1}-x_{2}\right)^{2}}{2!}+\cdots\right)
$$

6. In the preceding question, is it still true that $\exp \left(x_{1}\right)>\exp \left(x_{2}\right)$ if $x_{2}<x_{1}<0$ ?
